
ENSEMBLES OF RINGS WITH A COUMARIN UNIT. 1. SYNTHESIS OF 3-(2-R-THIAZOL-4-YL)- AND 3-(4-R-THIAZOL-2-YL)COUMARINS

Ya. V. Belokon', S. N. Kovalenko, A. V. Silin, and V. M. Nikitchenko

We have synthesized 3-(2-R-thiazol-4-yl)coumarins (R = H, CH_3 , CH_2CN , Ar) by condensation of 3-(α -bromoacetyl)coumarins with thioamides. We obtained 3-(4-R-thiazol-2-yl)coumarins (R = H, Ar) by several methods. By reaction of 2-cyanomethyl-4-phenylthiazole with 2-hydroxybenzaldehydes, we synthesized 2-imino-3-(4-phenylthiazol-2-yl)coumarins, which were converted to the corresponding coumarins by acid hydrolysis. For 3-(2-R-thiazol-4-yl)coumarins ($R = CH_2CN$), we carried out reactions with aromatic aldehydes. We propose alternative methods for synthesis of 2-[2-aryl(hetaryl)-1-cyanoethenyl]-4-(coumarin-3-yl)thiazoles.

Ensembles of rings containing cournarin units have stimulated considerable interest among researchers. These compounds include active media for lasers with effective intramolecular energy transfer [1-3] and promising drugs [4-8]. In this paper, we present results of an investigation of synthesis routes for 3-(2-R-thiazol-4-yl) and 3-(4-R-thiazol-2-yl)cournarins.

Scheme 1

IVa-e, Va-d, VIa-f, VIIa-e, VIIIa-e, IXa-o

I, II a $R^1 = H$; b $R^1 = 6$ -OMe; c $R^1 = 7$ -OH; d $R^1 = 7$ -NEt₂; e $R^1 = 5$,6-benzo; f $R^1 = 6$ -n-C₆H₁₃, 7-OH; III a $R^2 = H$; b $R^2 = CH_2CN$; c $R^2 = Me$; d $R^2 = Ph$; e $R^2 = p$ -MeOC₆H₄; f $R^2 = p$ -Me₂NC₆H₄; g $R^2 = p$ -ClC₆H₄; h $R^2 = p$ -PhC₆H₄, i $R^2 = p$ -(p-PhC₆H₄) C₆H₄; IV $R^2 = H$; VII $R^2 = p$ -PhC₆H₄; VII $R^2 = p$ -(p-PhC₆H₄) C₆H₄; IV, VII $R^2 = p$ -PhC₆H₄; VII $R^2 = p$ -PhC₆H₄; IV, VII A $R^1 = H$; b $R^1 = 7$ -OH; c $R^1 = 7$ -NEt₂; d $R^1 = 5$,6-benzo; e $R^1 = 6$ -n-C₆H₁₃, 7-OH; V $R^2 = CH_2CN$; V a $R^1 = H$; b $R^1 = 7$ -OH; c $R^1 = 5$,6-benzo; d $R^1 = 6$ -n-C₆H₁₃, 7-OH; V $R^2 = Ph$; a $R^1 = H$; b $R^1 = 6$ -OMe; c $R^1 = 7$ -OH; d $R^1 = 7$ -NEt₂; e $R^1 = 5$,6-benzo; f $R^1 = 6$ -n-C₆H₁₃, 7-OH; IXa-f $R^2 = Ph$; a $R^1 = H$; b $R^1 = 6$ -OMe; c $R^1 = 7$ -OH; d $R^1 = 7$ -NEt₂; e $R^1 = 5$,6-benzo; f $R^1 = 6$ -n-C₆H₁₃, 7-OH; g - k $R^2 = p$ -MeOC₆H₄; g $R^1 = H$; h $R^1 = 7$ -OH; i $R^1 = 7$ -NEt₂; j $R^1 = 5$,6-benzo; f $R^1 = 5$,6-benzo; k $R^1 = 6$ -n-C₆H₁₃, 7-OH; l, m $R^2 = p$ -MeOC₆H₄; l $R^1 = 7$ -NEt₂; m $R^1 = 5$,6-benzo; n, o $R^2 = p$ -ClC₆H₄; n $R^1 = 6$ -n-C₆H₁₃, 7-OH; l, m $R^2 = p$ -Me₂NC₆H₄; l $R^1 = 7$ -NEt₂; m $R^1 = 5$,6-benzo; n, o $R^2 = p$ -ClC₆H₄; n $R^1 = H$; o $R^1 = 5$,6-benzo.

Ukrainian Pharmaceutical Academy, Kharkov 310002. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1345-1355, October, 1997. Original article submitted March 26, 1997.

Yield, % (method)	80	50 (A) 41 (B)	30 (A) 17 (B)	40 (Å) 29 (B)	35 (A) 31 (B).	40 (A) 27 (B)	68	37	55	49	82	67
Fluorescence spectra, λ _{max} , πm	7	406.7	420,4	470,0	430,4	426,8	410,2	437,4, 474,8	431,4	432,5, 481,2	413,2	417.7
UV spectra, λ _{max} , nm	ø	330,3	363,9	407,2	374,5	366,0	336,7	358,2, 417,4	375,4	366,8, 435,9	337,2	355,9
IR spectra, cm ⁻¹	5	3100, 1720	3250, 3090, 1715	3080, 1717	3095, 1722	3300, 3085, 1715	3144, 2268, 1691	3336, 3143, 2264, 1696	3133, 2262, 1708	3366, 3120, 2251, 1684	3137, 1717	3135, 1711
$T_{\rm mp},~^{\circ}{ m C}^{*}$	4	160-161	276-277	134-136	225-227	192-194	157-159	268-269	213-214	192-193	178-180	180-183
Found N. % Calculated N. %	£	<u>6,10</u> 6,11	<u>5.65</u> 5.71	9, <u>33</u> 9,33	<u>5,12</u> 5,01	<u>4,37</u> 4,25	1	<u>9,89</u> 9,85	8,93, 8,80	7,60 7,60	<u>5,87</u> 5,76	<u>5,12</u>
Empirical formula	2	C ₁₂ H ₇ NO ₂ S	C ₁₂ H ₇ NO ₃ S	C ₁₆ H ₁₆ N ₂ O ₂ S	C ₁₆ H ₉ NO ₂ S	C ₁₈ H ₁₉ NO ₃ S	C ₁₄ H ₈ N ₂ O ₂ S	C ₁₄ H ₈ N ₂ O ₃ S	C ₁₈ H ₁₀ N ₂ O ₂ S	C ₂₀ H ₂₀ N ₂ O ₃ S	C ₁₃ H ₉ NO ₂ S	C ₁₄ H ₁₁ NO ₃ S
Compound	-	IŲ.a	IVb	IVc	IVd	IVe	Va	٩٧	٨c	٨d	Vļa	VIb

TABLE 1. Characteristics of Synthesized Compounds IVa-e, Va-d, Vla-f, Vlla-e, Vllla-e, IXa-o, XVIa-m, XVIIIa,b

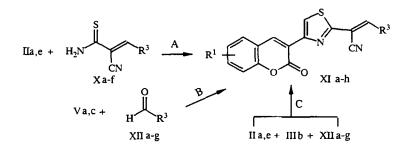
(pər
contin
1 (6
BLE
TA

50	41	39	81	59	75	70	65	85	72	50	65	75	45	77	75
7	424,8, 469,0	466,4	433,3	431,0, 481,2	436,0	435,4	475,4	444,8	438,4	433,7	437,5	542,1	440,0	421,6	431,0
6	360,2, 418,8	407,5	375,4	366,0, 432,2	344,6	369,6	411,2	382,6	372,0	345,8	368,2	409,5	369,5	344,4	367,2
S	3270, 3138, 1718	3140, 1700	3134, 1715	3422, 3144, 1712	3036, 1716	3250, 3060, 1713	3042, 1714	3044, 1720	3290, 3965, 1715	3050, 1715	3240, 3075, 1710	3050, 1720	3280, 3080, 1715	3144, 1740	3144, 1736
4	237-238	163-165	194-195	199-200	206-207	318-320	170-171	293-295	253-255	277-280	329-330	338-340	267-269	156-158	181-183
. 3	<u>5,45</u> 5,40	8.87 8.91	4.79	4,00 4,08	<u>3.71</u> 3.67	<u>3,50</u> 3,52	<u>6, 25</u> 6, 19	<u>3, 30</u> 3, 25	<u>3.02</u> 2.9	<u>3,01</u> 3,06	<u>3.01</u> 2,96	<u>3,00</u> 2,76	<u>2.70</u> 2.51	÷i	<u>4,20</u> 4,18
2	C ₁₃ H₀NO ₃ S	C ₁₇ H ₁₈ N ₂ O ₂ S	C ₁₇ H ₁₁ NO ₂ S	C ₁₉ H ₂₁ NO ₃ S	C ₂₄ H ₁₅ NO ₂ S	C ₂₄ H ₁₅ NO ₃ S	C ₂₈ H ₂₄ N ₂ O ₂ S	C ₂₈ H ₁₇ NO ₂ S	C ₃₀ H ₂₇ NO ₃ S	C ₃₀ H ₁₉ NO ₂ S	C ₃₀ H ₁₉ NO ₃ S	C ₃₄ H ₂₁ NO ₂ S	C ₃₆ H ₃₁ NO ₃ S	C ₁₈ H ₁₁ NO ₂ S	C ₁₉ H ₁₃ NO ₃ S
1	VIC	PIA	VIe	VIf	VIĮ:a	VIIb	VIIC	рпл	VIIe	VIIļa	AIIIV	PIIIA	VIII e	IXa	dXI

(continued)	
TABLE 1	

æ	44	51	83	71	82	36	43	19	67	58	70	87	89	35 (A), 51 (B)	45 (A), 49 (B)	30 (A), 47 (B)	38 (A), 54 (B)
۲	434,0, 478,0	473,9	442,1	436,7, 481,7	470,4	456,2, 479,8	469,5	474,4	442,5, 482,2	489,7	ļ	420,9	440,5	423,4	449,8	490,8	460,4
2	366,6, 423,7	410,85	380,5	369,8, 440,9	352,9	365,2, 424,1	497,5	383,4	373,1, 438,2	412,2	ļ	350,9	381,1	352,4	381,1	435,9	396,8
5	3254, 3130, 1700	3156, 1704	3131, 1719	3345, 3142, 1700	3152, 1736	3283, 3139, 1700	3151, 1710	3129, 1743	3295, 3147, 1704	3148, 1711	3133, 1736	3138, 1728	3119, 1712	3120, 1715	3325, 3115, 1720	3100, 1717	3118, 1715
4	264-267	153-155	235-237	230-232	213-215	283-286	130-133	216-217	222-223	180-183	286-288	197-198	240-242	172-174	297-300	126-127	263-265
e	<u>4,45</u> 4,36	į	ļ	<u>3.51</u> 3.45	4,23 4,18	<u>4,01</u> 3,99	<u>6,83</u> 6,89	$\frac{3,57}{3,63}$	$\frac{3,20}{3,22}$	<u>10,07</u> 10,02	į	İ	ļ	<u>6,07</u> 6,11	<u>5,75</u> 5,71	<u>9,29</u> 9,33	<u>5,03</u> 5,01
2	C ₁₈ H ₁₁ NO ₃ S	C ₂₂ H ₂₀ N ₂ O ₂ S	C ₂₂ H ₁₃ NO ₂ S	C ₂₄ H ₂₃ NO ₃ S	C ₁₉ H ₁₃ NO ₃ S	C ₁₉ H ₁₃ NO ₄ S	C ₂₃ H ₂₂ N ₂ O ₃ S	C ₂₃ H ₁₅ NO ₃ S	C ₂₅ H ₂₅ NO ₄ S	C ₂₄ H ₂₅ N ₃ O ₂ S	C ₂₄ H ₁₈ N ₂ O ₂ S	C ₁₈ H ₁₀ CINO ₂ S	C ₂₂ H ₁₂ CINO ₂ S	C ₁₂ H7NO ₂ S	C ₁₂ H ₇ NO ₃ S	C ₁₆ H ₁₆ N ₂ O ₂ S	C ₁₆ H ₉ NO ₂ S
-	IXc	рхі	IXe	IXf	IXg	ЧХI	IXi	ix j	IXk	1X1	IXm	IX·N	IX 0	XVĮa	XVIb	XVIC	ΡΙΛΧ

ш
щ
-
<u>m</u>
m
щ
B
AE.
щ
ÅĒ
AE.
ÅĒ

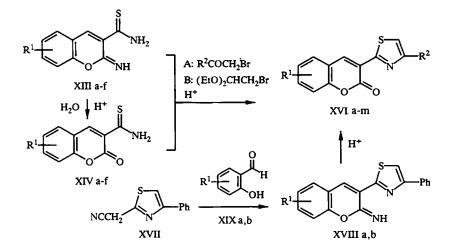

80	40 (A) 51 (B)	69 (A) 85 (B) 97 (D)	66 (A) 73 (B) 98 (D)	87 (A) 92 (B)	70 (A) 69 (B)	74 (A) 77 (B)	65 (A) 71 (B)	79 (A) 70 (B)	68 (A) 77 (B)	89	77
1	458,6	489,7	490,2	500	506,6	480,8	497,8	505,8	480,8	463,4	480,8
Q	390,3	374,5	388,2	406,2	384,3	395,3	440,1	406,8	401,6	376,2	390,3
S	3315, 3105, 1720	3100, 1727	3116, 1708	3062, 1709	3100, 1714	3300, 3105, 1713	3120, 1712	3105, 1711	3310, 3100, 1718	3253, 3099, 1657	3312, 3124, 1657
4	220-221	149-150	245-246	255-256	240-242	309-310	205-207	297-298	267-270	184-185	153-154
3	<u>4,28</u> 4.25		<u>4,07</u> 4,18	<u>4,01</u> 3,94	<u>3,65</u> 3,67	<u>3,48</u> <u>3,52</u>	<u>6,11</u> 6,19	$\frac{3,24}{3,25}$	2,94 2,91	<u>9,17</u> 9,20	<u>8,35</u> 8,38
2	C ₁₈ H ₁₉ NO ₃ S	C ₁₈ H ₁₁ NO ₂ S	C ₁₉ H ₁₃ NO ₃ S	C ₂₂ H ₁₃ NO ₂ S	C ₂₄ H ₁₅ NO ₂ S	C ₂₄ H ₁₅ NO ₃ S	C ₂₈ H ₂₄ N ₂ O ₂ S	C ₂₈ H ₁₇ NO ₂ S	C ₃₀ H ₂₇ NO ₂ S	C ₁₈ H ₁₂ N ₂ OS	C ₁₉ H ₁₄ N ₂ O ₂ S
1	XVIe	XVIf	XVIg	XVIh	XVIi	ίινx	XVIK	XVI <i>1</i>	XVIm	XVIIļa	AUIIb

*Compounds IVa-e, Va, c, d, VIe, IXb, XVIa-e, XVIg, h, XVIIIa, b were recrystallized from n-BuOH; IXa, c, e, f were recrystallized from MeCN; IXi-k were recrystallized from aqueous DMF: Vb, Vla-d, f, IXd, g, h, l, XVIf were recrystallized from i-PrOH; VIIa-e, VIIIa-e, IXm-o, XVIi-m were recrystallized from DMF. The most suitable method for building ensembles of rings containing coumarin and thiazole units is to combine a dielectrophilic $[C_2]_2^{2^+}$ synthon with a dinucleophilic $[SN]_3^{2^-}$ synthon. As the synthetic equivalents of the $[C_2]_2^{2^+}$ synthon, we chose 3-(α -bromoacetyl)coumarins IIa-f [9], while as the equivalents of the $[SN]_3^{2^-}$ synthon we chose thioformamide, thioacetamide, thioacetamide, and aromatic thioamides IId-i.

Condensation of coumarins IIa-f with thioamides IIIb-i was carried out with equimolecular amounts of reagents. The hydrogen halides formed in this case were converted to the free bases Va-d, VIa-f, VIIa-e, VIIIa-e, IXa-o by treatment with an aqueous ammonia solution. The 3-(thiazol-4-yl)coumarins IVa-e were synthesized both by reaction of IIa,c-f with thioformamide IIIa [11] (method A) and with the help of a modified Hantsch reaction, and the coumarin IIa,c-f was treated with formamide and phosphorus pentasulfide (method B) (Scheme 1). We found that in most cases, the use of thioformamide, despite its low stability, is preferred due to the elimination of secondary reactions of pentasulfide with $3-(\alpha$ -bromoacetyl)coumarins. 4-Substituted thiobenzamides IIIe-g were obtained from the corresponding aldehydes by the method suggested in [12], while the thioamides IIId,h,i were obtained by treatment of the corresponding amides with phosphorus pentasulfide [13].

The use of 4-R-benzylidenecyanothioacetamides Xa-f [14] as the thioamide component allowed us to obtain 2-[2-aryl(hetaryl)-1-cyanoethenyl]-4-(coumarin-3-yl)thiazoles XIa-h (method A). With the goal of confirming the structure, we carried out alternate syntheses of compounds XIa-h by condensation of 3-(2-cyanomethylthiazol-4-yl)coumarins Va,c and aldehydes XIIa-g (method B) and three-component condensation of the derivatives IIa,e, IIIb and the aldehydes XIIa-g (method C) (Scheme 2).

Scheme 2



XIa-g R^1 = H; X, XI, XII a R^3 = 4-ClC₆H₄; b R^3 = 4-BrC₆H₄; c R^3 = 4-FC₆H₄; d R^3 = 4-MeOC₆H₄; e R^3 = 4-O₂NC₆H₄; f R^3 = 4-Me₂NC₆H₄; g R^3 = furfuryl-2; XI h R^1 = 5,6-benzo; R^3 = 4-ClC₆H₄

Upon reaction of 2-iminocoumarin-3-thiocarboxamides XIIIa-f [15] with α -halocarbonyl compounds XVa-c, the compounds XVIIIa-m are formed. However, this reaction may be complicated by hydrolysis of the imino group as a result of the hydrogen bromide and water liberated. Therefore, at the end of the reaction, complete conversion of the mixture of compounds formed XVIa-m and XVIIIa-m to coumarins XVIa-m was accomplished via acid hydrolysis. Synthesis of compounds XVIa-e, where the α -halocarbonyl component was bromoacetaldehyde, caused certain difficulties concerning purification of the compounds obtained because of the high reactivity and instability of bromoacetaldehyde. It was established that the use of the diethylacetal of bromoacetaldehyde XVd can also lead to the desired compounds; furthermore, when using the acetal, the synthesis is simplified and the yields are increased. If in the first stage the iminocoumarins XIIIa-f are hydrolyzed to the corresponding coumarins XIVa-f, then the end product of the reaction with haloketones XVa-c will be compounds XVIa-m.

In order to obtain 3-hetaryl-substituted 2-imino-2H-1-benzopyrans, the simplest and most elegant method is the Knoevenagel condensation [16,17] using salicylaldehydes and hetarylacetonitriles. For synthesis of 2-imino-3-(4-phenyl-thiazol-2-yl)coumarins XVIIIa,b, in the first stage the Hantsch reaction was carried out and 2-cyanomethyl-4-phenylthiazole (XVII) was obtained [18]; then 2-iminocoumarins XVIIIa,b were obtained by the Knoevenagel reaction. This synthesis route is preferred, since the process of closure of the iminocoumarin ring is not complicated by hydrolysis of the imino group. Upon boiling compounds XVIIIa,b in an alcohol-water-hydrochloride acid system, the compounds XVII,g are formed in high yields (Scheme 3).

Scheme 3

XIII, XIV, XIX a $\mathbb{R}^1 = H$; b $\mathbb{R}^1 = 6$ -OMe; c $\mathbb{R}^1 = 7$ -OH; d $\mathbb{R}^1 = 7$ -NEt₂; e $\mathbb{R}^1 = 5$,6-benzo; f $\mathbb{R}^1 = 6$ -n-C₆H₁₃, 7-OH; XV a $\mathbb{R}^2 = H$; b $\mathbb{R}^2 = Ph$; c $\mathbb{R}^2 = 4$ -PhC₆H₄; XVIa-e $\mathbb{R}^2 = H$; a $\mathbb{R}^1 = H$; b $\mathbb{R}^1 = 7$ -OH; c $\mathbb{R}^1 = 7$ -NEt₂; d $\mathbb{R}^1 = 5$,6-benzo; e $\mathbb{R}^1 = 6$ -n-C₆H₁₃, 7-OH; f-h $\mathbb{R}^2 = Ph$; f $\mathbb{R}^1 = H$; g $\mathbb{R}^1 = 6$ -OMe; h $\mathbb{R}^1 = 5$,6-benzo; i-m $\mathbb{R}^2 = 4$ -PhC₆H₄; i $\mathbb{R}^1 = H$; j $\mathbb{R}^1 = 7$ -OH; k $\mathbb{R}^1 = 7$ -NEt₂; l $\mathbb{R}^1 = 5$,6-benzo; m $\mathbb{R}^1 = 6$ -n-C₆H₁₃, 7-OH; XVIII a $\mathbb{R}^1 = H$; b $\mathbb{R}^1 = 6$ -OMe

In the IR spectra, among the characteristic bands confirming the structure of 2- and 4-(coumarin-3-yl)thiazoles IVa-e, Va-d, VIa-f, VIIa-e, IXa-o, XIa-h, XVIa-m we should pick out the vibrations of the lactone C=O group which appear at 1684-1743 cm⁻¹ [19-21], and the absence of this absorption band for compounds XVIIIa,b; vibrations of the C-H bond of the thiazole ring are found in the range 3036-3156 cm⁻¹ [22, 23] (Tables 1 and 3). The electronic absorption and fluorescence spectra of thiazolylcoumarins IVa-e, Va-d, VIa-f, VIIa-e, IXa-o, XVIa-i, XVIIIa,b have bands characteristic for 3-substituted coumarins, with pronounced vibronic structure (Table 1). Analysis of the PMR spectra of compounds Va, VIb, d, f, IXa, b, l, n, XIa-h, XVIb, XVIIIb showed (Tables 2 and 3) that the proton signals from these compounds are found in the region typical for coumarins and thiazoles [24]. In the mass spectra of compounds VIa-e, VIIa, c, e, and IXc, d, e, the peak for most of the molecular ion occurs according to a scheme typical for 2,4-disubstituted thiazoles: rupture of the 1-2 and 3-4 bonds of the thiazole ring with elimination of a molecule of the corresponding nitrile and localization of the charge on the sulfur-containing moiety is most characteristic.

EXPERIMENTAL

The IR spectra of the synthesized compounds were recorded on a Specord M-80 in KBr pellets. The electronic spectra were recorded on a Specord M-40 in 2-propanol. The fluorescence spectra were recorded on a Hitachi F-4010. The mass spectra were obtained on a Finnigan MAT-4615 B, ionization energy 70 eV, with ballistic heating of the sample. The PMR spectra were recorded on a Bruker WP-200 in DMSO-D₆, (compounds XIa-h, in CDCl₃), internal standard TMS.

The purity of the compounds was monitored by TLC on Silufol UV-254 plates in a 9:1 chloroform-ethanol system.

The physicochemical characteristics of the synthesized compounds IVa-e, Va-d, VIa-f, VIIa-e, VIIIa-e, IXa-o, XIa-h, XVIa-m, XVIIIa,b are presented in Tables 1-4.

General Procedure for Obtaining 3-(2-R-thiazol-4-yl)-2H-1-benzopyran-2-ones IVa-e, Va-d, VIa-f, VIIa-e, VIIIa-e, IXa-o (Table 1). A. Equimolecular amounts of 3-(α -bromoacetyl)coumarins IIa-f and the corresponding compound containing a thioamide group IIIa-i (0.01 moles) in 20-49 ml of 2-propanol or ethanol were boiled for 10-20 min (until a precipitate fell out of solution), then cooled and diluted with water and alkalized with an aqueous solution of ammonia or ammonium acetate up to pH \sim 7. The precipitate was separated and washed with water and ethanol on the filter, dried, and crystallized from an appropriate solvent.

Com-		Chemical sh	lift, ppm, spin-spin coupling	constant (J, Hz)				
pound	5'-H S (1H)	4-H S (1H)	ıA	other protons				
Va	8,41	8,74	7,39 - 7,94 (4H,m)	4,64 (2H, s, CH ₂)				
VIb	8,25	8,77	7,50 (1H, d, 5-H; 2,5); 7,22 (1H, d.d, 7-H; 8,5; 2,5); 7,38 (1H, d, 8-H; 8,5)	2,73 (3H, s, CH ₃); 3,82 (3H, s, 6-OCH ₃)				
VId	8,03	8,63	7,65 (1H, d, 5-H; 8,5); 6,76 (1H, d.d, 6-H; 8,5; 2,0); 6,60 (1H, d, 8-H; 2,0)	3,48 (4H, q, 7- N(<u>CH</u> ₂ CH ₃) ₂); 1,16 (6H, t 7-N(CH ₂ <u>CH</u> ₃) ₂); 2,73 (3H, s, CH ₃)				
Vltf	8,07	8,63	7,50 (1H, s, 5-H); 6,78 (1H, s, 8-H)	1,57 (2H, q, CH ₃ (CH ₂) ₄ CH ₂); 1,29 (8H, s, CH ₃ (CH ₂) ₄); 0,87 (3H, t, CH ₃ (CH ₂) ₄ CH ₂)				
IXa	8,40	8,90	7,34 8,03 (9H, m)	_				
IX b	8,44	8,92	7,20 - 8,06 (8H, m)	3,84 (3H, s, 6-OCH ₃)				
IX <i>I</i>	8,04	8,72	7,84 (2H, d; 8.5); 7,61 (1H, d, 5-H; 8,5); 6,80 (2H, d; 8,5); 6,70 (1H, d, d, 6-H; 8,5; 2,0); 6,57 (1H, d, 8-H; 2,0)	3,46 (4H, q. 7- N(CH2CH3)2); 1,17 (6H, t, 7-N(CH2 <u>CH3</u>)2); 3,00 (6H, s, 4-N(CH3)2)				
IX n	8,42	8,88	7,62 - 8,05 (8H, m)					
XVIb	8,27	9,05	7,27 - 8,09 (8H, m)	3,82 (3H, s, 6-OCH ₃)				
XVIII6*	7,91	8,90	7,52 - 7,71 (8H, m)	4,07 (3H, s, 6-OCH ₃)				

TABLE 2. PMR Spectra of Compounds Va, VIb, d, f, IXa, b, l, n, XVIb, XVIIIb

*PMR spectrum in CF₃COOD.

B. 0.013 moles formamide and 0.003 moles phosphorus pentasulfide in 50 ml 1,4-dioxane were allowed to stand at room temperature for 1 h. 0.01 moles coumarin IIa-e was added to the mixture and then this was heated on a water bath for 1 h. The precipitate of compounds IVa-e was filtered off, washed with water and ethanol, dried, and crystallized from an appropriate solvent.

General Procedure for Obtaining 2-(Aryl-1-cyanoethenyl)-4-(coumarin-3-yl)thiazoles XIa-h (Table 3). A. Equimolecular amounts of coumarins IIa-f and the corresponding 4-R-benzylidenecyanothioacetamides Xa-f (0.01 moles) in 20 ml DMF were heated for 10-20 min at 80-90°C, cooled, diluted with water, and alkalized with an aqueous solution of ammonia or ammonium acetate up to pH \sim 7. The precipitate was separated, washed with water and ethanol on the filter, dried, and crystallized from a 1-butanol-DMF mixture.

B. Equimolecular amounts of 3-(2-cyanomethylthiazol-4-yl)coumarins Va,c and aldehydes XIIa-g (0.01 moles) were dissolved in 30-40 ml 2-propanol or ethanol, then 1-2 drops of piperidine were added. The reaction mixture was heated for 5 min at a temperature of 40-50°C, then stirred at room temperature until a precipitate fell out of solution. The precipitate was separated, washed with 2-propanol or ethanol on the filter, dried, and crystallized.

C. Equimolecular amounts of coumarins IIa-f, aldehydes XIIa-g, and 1 g thiocyanoacetamide IIIb (0.01 moles) in 20-30 ml 2-propanol or ethanol were boiled for 10 min, then 1-2 ml piperidine were added. The reaction mixture was heated for 5 min at a temperature of 50-60°C, then stirred at room temperature. The precipitate was separated, washed on the filter with 2-propanol or ethanol, dried, and crystallized from a 1-butanol-DMF mixture.

General Procedure for Obtaining 3-(4-R-thiazol-2-yl)-2H-1 of Benzopyran-2-ones XVIa-m (Table 1). A. Equimolecular amounts of 2-imino-2H-1-benzopyran-3-thiocarboxamides XIIIa-f and the corresponding α -halocarbonyl compounds XVa-c (0.01 moles) in 20-40 ml of 2-propanol or ethanol were boiled for 10-20 min (until a precipitate fell out of solution), then 10 ml each concentrated hydrochloric acid and water were added; this was boiled for 10-20 min more, cooled, diluted with water and alkalized with an aqueous solution of ammonia or ammonium acetate up to pH \sim 7. The precipitate was separated, washed on the filter with water and ethanol, dried, and crystallized from an appropriate solvent.

B. Equimolecular amounts of 2-imino-2H-1-benzopyran-3-thiocarboxamides XIIIa,c-f and diethylacetal of bromoacetaldehyde XVd (0.01 moles) in 20-40 ml 2-propanol or ethanol were boiled for 15-25 min (until a precipitate fell out of solution); 10 ml each concentrated hydrochloric acid and water were added and this was boiled for 15-20 min more, cooled, diluted with water and alkalized with an aqueous solution of ammonia or ammonium acetate up to pH \sim 7. The precipitate was separated, washed on the filter with water and ethanol, dried, and crystallized from an appropriate solvent.

Com- pound	Empirical formula	Found N, % Calculated N, %	<i>T</i> _{mp} , °C	IR spectra, cm ⁻¹	Chemical shift. ppm, spin-spin coupling constant (J, Hz)	Yield, % (method)
Xla	C ₂₁ H ₁₁ ClN ₂ O ₂ S	<u>7,23</u> 7,17	223-224	3127, 2231, 1712	8,56 (1H, s, 5'-H); 8,84 (1H, s, 4-H); 7,318,10 (8H _{arom} , + 1H, m, CH=)	81 (A) , 77 (B) , 70(C)
XIP	C ₂₁ H ₁₁ BrN2O2S	<u>6,40</u> 6,44	225-227	3117, 2231, 1713	8,58 (1H, S, 5'-H); 8,84 (1H, S, 4-H); 7,328,08 (8H _{arom} + 1H, m, CH=)	79 (A), 77 (B). 69 (C)
XIC	C21H11FN2O2S	7,43 7,48	199-200	3143, 2216, 1721	8,54 (1H, s, 5'-H); 8,84 (1H, s, 4-H); 7,318.10 (8H arom + 1H, m, CH=)	85 (A), 87 (B), 71 (C)
XId	C22H14N2O3S	7,19 7,25	207-208	3146, 2223, 1712	8,56 (1H, \$, 5'-H); 8,88 (1H, \$, 4-H); 7,048,36 (8Harom + 1H, m, CH-); 3,89 (3H, \$, OCH ₃)	81 (A), 73 (B), 71 (C)
XIe	C21H11N3O4S	<u>10,39</u> 10,47	260-261	3126, 2229, 1718	8,64 (1H, s, 5'-H); 8,84 (1H, s, 4-H); 7,318,37 (8H:arom + 1H, m, CH=)	70 (A), 59 (B), 47 (C)
XI f	C ₂₃ H ₁₇ N ₃ O ₂ S	<u>10,49</u> 10,52	248-250	3136, 2215, 1719	8,41 (1H, s, 5 ⁷ -H); 8,84 (1H, s, 4-H); 6,727,96 (8Harom + 1H, m, CH=); 3,10 (6H, s, 4-N(CH ₃) ₂)	69 (A), 67 (B), 41 (C)
XIg	C19H10N2O3S	<u>8,08</u> 8,09	214-216	3141, 2214, 1720	8,52 (1H, S, 5'-H); 8,82 (1H, S, 4-H); 7,297,98 (7H,arom + 1H, m, CH-)	71 (A), 72 (B), 39 (C)
XIh	C ₂₅ H ₁₃ ClN ₂ O ₂ S	<u>6,29</u> 6,36	240-242:	3127, 2213, 1719	8,60 (1H, s, 5'-H); 9,37 (1H, s, 4-H); 7,438,10 (10H arom + 1H, m, CH=)	77 (A), 71 (B), 52 (C)

TABLE 3. Physicochemical Characteristics of Synthesized Compounds XIa-h

TABLE 4. Mass Spectra of Compounds VIa-e, VIIa, c, e, IXc, d, e

Com- pound	m/z (l _{rel} %)
VIa	243 (M ⁺ , 100), 215 (15), 202 (28), 174 (32), 174 (32), 146 (18), 145 (21), 130 (7), 101 (6), 102 (34)
VIb	273 (M ⁺ , 100), 245 (13), 232 (9), 230 (7), 204 (10), 202 (12), 161 (11)
Vlc	259 (M ⁺ , 38), 231 (7), 218 (6), 205 (6), 204 (44), 190 (20), 189 (100), 162 (6), 161 (11), 134 (8), 105 (20)
VId	314 (M ⁺ , 11), 299 (17), 260 (6), 259 (41), 245 (15), 244 (100), 216 (18)
VIe	293 (M ⁺ , 100), 266 (6), 265 (35), 252 (6), 224 (29), 196 (5), 195 (26), 163 (7), 152 (24), 151 (14), 150 (8), 147 (6)
VIIa	381 (M ⁺ , 100), 174 (20), 145 (14), 101 (15)
VIIc	452 (M ⁺ , 65), 437 (45), 259 (70), 244 (100), 216 (50), 116 (95), 77 (80)
VIIe	481 (M ⁺ , 40), 410 (70), 290 (55), 275 (100), 219 (95)
IXc	321 (M ⁺ , 100), 293 (13), 259 (8), 244 (17), 218 (18)
IXd	376 (M ⁺ , 85), 361 (100), 332 (34), 304 (13), 247 (10), 229 (41)
IX,e	355 (M ⁺ , 100), 328 (31), 244 (17), 224 (22), 219 (8)

*Peaks with $I_{\rm rel} \ge 5\%$ are given.

C. Equimolecular amounts of 2-oxo-2H-1-benzopyran-3-thiocarboxamides XIVa-f and the corresponding α -halocarbonyl compound XVa-c (0.01 moles) in 20-40 ml of 2-propanol or ethanol were boiled for 10-20 min (until a precipitate fell out of solution); then this was cooled, diluted with water, and alkalized with an aqueous solution of ammonia or ammonium acetate up to pH \sim 7. The precipitate was separated, washed on the filter with water and ethanol, dried, and crystallized.

D. 0.01 moles of the corresponding 2-iminocoumarin XVIIIa, b was dissolved in 20 ml 1,4-dioxane, then 5-7 ml concentrated hydrochloric acid was added. The solution was heated for 5 min, diluted with 60 ml water, alkalized with an aqueous solution of ammonia up to pH \sim 7-8. The precipitate was filtered off and recrystallized from butanol.

General Procedure for Obtaining 2-Imino-3-(4-R-thiazol-2-yl)-2H-1-benzopyrans XVIIIa,b (Table 1). Equimolecular amounts of the corresponding salicylaldehyde XIXa, b and 2-cyanomethyl-4-phenylthiazole XVII (0.01 moles) was dissolved in 20-40 ml 2-propanol or ethanol, then 1-2 drops piperidine was added. The reaction mixture was heated for 5 min at a temperature of 40-50°C, and then was stirred at room temperature until a precipitate fell out of solution. The precipitate was separated, washed on the filter with 2-propanol or ethanol, dried, and crystallized from 1-butanol.

REFERENCES

- 1. J. Bourson, J. Mugnier, and B. Valeur, Chem. Phys. Lett., 92, 430 (1982).
- 2. M. M. Asimov, V. M. Nikitchenko, A. I. Novikov, A. N. Rubinov, Zs. Bor, and L. Gaty, Chem. Phys. Lett., 149, 140 (1988).
- 3. F. P. Shafer, Zs. Bor, and W. Luttke, Chem. Phys. Lett., 56, 455 (1978).
- 4. M. Y. Ebeid, K. M. Amin, and M. M. Hussein, Egypt. J. Pharm. Sci., 28, No. 1-4, 183 (1987).
- 5. V. R. Rao and T. V. P. Rao, Indian J. Chem., 25B, 413 (1986).
- 6. S. S. El-Morsy, A. A. Fadda, and M. S. El-Hossini, J. Indian Chem. Soc., 65, 699 (1988).
- 7. I. A. Zhuravel', S. N. Kovalenko, V. P. Chernykh, A. O. Porokhnyak, E. K. Ryadnykh, and V. M. Markova, Farmats. Zh., No. 4, 72 (1991).
- 8. S. N. Kovalenko, V. P. Chernykh, Ya. V. Belokon', I. V. Orlenko, I. A. Zhuravel', V. M. Nikitchenko, and A. V. Silin, Kazansk. Med. Zh., 76, 189 (1995).
- 9. C. F. Koelsch, J. Am. Chem. Soc., 72, 2993 (1950).
- 10. U. Schmidt and H. Kibitzek, Chem. Ber., 93, 1559 (1960).
- 11. Yu. V. Markova, A. M. Pozharskaya, V. I. Maimind, T. F. Zhukova, N. A. Kosolapova, and M. N. Shchukina, Dokl. Akad. Nauk SSSR, 91, 1129 (1953).
- 12. E. C. Taylor and J. A. Zoltewicz, J. Am. Chem. Soc., 82, 2656 (1960).
- 13. K. Kindler, Ann. Chem., 431, 209 (1923).
- 14. I. Ya. Grinshtein and L. A. Sherin', Izv. Akad. Nauk Latv. SSR, Ser. Khim., No. 4, 469 (1963).
- 15. J. S. A. Brunskill, A. De, Z. Elagbar, H. Jeffery, and D. F. Ewing, Synth. Commun., 8, 533 (1978).
- 16. E. Profft and K. Stuhmer, Arch. Pharm., 1, 1 (1967).
- 17. P. Czerney and H. Hartmann, J. Prakt. Chem., 323, 691 (1981).
- 18. H. Schafer and K. Gewald, J. Prakt. Chem., 316, 684 (1974).
- 19. F. Bohlmann, Chem. Ber., 90, 1519 (1957).
- 20. V. Prey, B. Kerres, and H. Berbalk, Monatsh. Chem., 91, 774 (1960).
- 21. S. R. Tripathi and N. K. Sanyal, Indian J. Phys., 63B, No. 4, 474 (1989).
- 22. M. P. V. Mijovic and J. Walker, J. Chem. Soc., No. 8, 3381 (1961).
- 23. A. Taurins, J. G. E. Fenyes, and R. N. Jones, Canad. J. Chem., 35, 423 (1957).
- 24. M. A. Kirpichenko, I. I. Grandberg, L. K. Denisov, and L. M. Mel'nikova, Izv. TSKhA, No. 3, 172 (1985).